Growth curve mixture models

نویسنده

  • Benjamin E. Leiby
چکیده

doi: 10.3969/j.issn.1002-0829.2012.06.009 Division of Biostatistics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA *Correspondence: [email protected] Psychiatric studies often collect longitudinal data to characterize the natural history of disease in a cohort or to evaluate the effect of behavioral or pharmaceutical interventions. For example, in a recent partially randomized study comparing escitalopram and nortriptyline in the treatment of depression, several depression scales were measured weekly over the 3-month course of treatment.[1] While the primary outcome measure of such studies may be a binary indicator of improvement at the end of treatment, analysis of the full longitudinal profile that makes optimal use of all available data to model rates of change over time may be more informative. For example, in the escitalopram/nortiptyline study, analysis of dichotomous outcomes adjusted for time participating in the study showed no difference between drugs, while analysis of the longitudinal profiles did indicate different patterns of improvement in the two groups over time.[2]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analyzing criminal trajectory profiles: Bridging multilevel and group-based approaches using growth mixture modeling

Over the last 25 years, a life-course perspective on criminal behavior has assumed increasing prominence in the literature. This theoretical development has been accompanied by changes in the statistical models used to analyze criminological data. There are two main statistical modeling techniques currently used to model longitudinal data. These are growth curve models and latent class growth m...

متن کامل

An introduction to latent variable mixture modeling (part 2): longitudinal latent class growth analysis and growth mixture models.

OBJECTIVE Pediatric psychologists are often interested in finding patterns in heterogeneous longitudinal data. Latent variable mixture modeling is an emerging statistical approach that models such heterogeneity by classifying individuals into unobserved groupings (latent classes) with similar (more homogenous) patterns. The purpose of the second of a 2-article set is to offer a nontechnical int...

متن کامل

Comparison of Some Nonlinear Functions for Describing Broiler Growth Curves of Cobb500 Strain

This study was conducted to compare some nonlinear functions to describe the broiler growth curve of the Cobb500 strain. A flock of fifty one-day-old chicks were randomly selected from a henhouse of 2500 chicks. Our goal was to establish a growth curve using weighting data using mathematical solutions of time-dependent differential functions. In total, six equations were subjected to a statisti...

متن کامل

Evaluation of Non- linear Growth Curves Models for Native Slow-growing Khazak Chickens

Native poultry is a valuable genetic source with high resistance against diseases providing an important subject for breeding programs. The non-linear mathematical modeling of the growth pattern may partly explain the relationship between requirements and body weight to precise feeding that plays a vital role in the animal enterprises. A study was conducted to compare five non-linear models inc...

متن کامل

Growth mixture models in longitudinal research

Latent growth curve models as structural equation models are extensively discussed in various research fields (Curran and Muthén in Am. J. Community Psychol. 27:567–595, 1999; Duncan et al. in An introduction to latent variable growth curve modeling. Concepts, issues and applications, 2nd edn., Lawrence Earlbaum, Mahwah, 2006; Muthén and Muthén in Alcohol. Clin. Exp. Res. 24(6):882–891, 2000a; ...

متن کامل

Evaluation of Models to Describe Temporal Growth in Local Chickens of Ghana

The logistic, Gompertz, Richards and asymmetric logistic growth curve models were fitted to body weight data of local Ghanaian chickens and French SASSO T44 chickens. All four growth models provided good fit for each sex by genotype growth data with R2 values ranging from 86.7% to 96.7%. The rate constant parameter, k, ranged between 0.137 and 0.271 and were significantly different from zero fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2012